Electrophysiological adaptations of insect photoreceptors and their elementary responses to diurnal and nocturnal lifestyles

Author:

Frolov Roman V.ORCID,Ignatova Irina I.

Abstract

AbstractNocturnal vision in insects depends on the ability to reliably detect scarce photons. Nocturnal insects tend to have intrinsically more sensitive and larger rhabdomeres than diurnal species. However, large rhabdomeres have relatively high membrane capacitance (Cm), which can strongly low-pass filter the voltage bumps, widening and attenuating them. To investigate the evolution of photoreceptor signaling under near dark, we recorded elementary current and voltage responses from a number of species in six insect orders. We found that the gain of phototransduction increased with Cm, so that nocturnal species had relatively large and prolonged current bumps. Consequently, although the voltage bump amplitude correlated negatively with Cm, the strength of the total voltage signal increased. Importantly, the background voltage noise decreased strongly with increasing Cm, yielding a notable increase in signal-to-noise ratio for voltage bumps. A similar decrease in the background noise with increasing Cm was found in intracellular recordings in vivo. Morphological measurements of rhabdomeres were consistent with our Cm estimates. Our results indicate that the increased photoreceptor Cm in nocturnal insects is a major sensitivity-boosting and noise-suppressing adaptation. However, by requiring a compensatory increase in the gain of phototransduction, this adaptation comes at the expense of the signaling bandwidth.

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Animal Science and Zoology,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3