DPOAEs and tympanal membrane vibrations reveal adaptations of the sexually dimorphic ear of the concave-eared torrent frog, Odorrana tormota

Author:

Cobo-Cuan Ariadna,Feng Albert S.,Zhang Fang,Narins Peter M.

Abstract

AbstractWhile most anuran species are highly vocal, few of them seem to be endowed with a complex call repertoire. Odorrana tormota, combines a remarkable vocalization complexity with auditory sensitivity over an extended spectral range spanning from audible to ultrasonic frequencies. This species is also exceptional for its ability to modify its middle ear tuning by closing the Eustachian tubes (ET). Using scanning laser Doppler vibrometry, the tympanal vibrations were measured to investigate if the tuning shift caused by the ET closure contributes to intraspecific acoustic communication. To gain insight into the inner ear frequency selectivity and sensitivity of this species, distortion product otoacoustic emissions were recorded at multiple frequency-level combinations. Our measurements of inner ear responses indicated that in O. tormota each sex is more sensitive to the frequencies of the other sex's vocalizations, female ears are more sensitive to 2–7 kHz, while male ears are more sensitive to 3–15 kHz. We also found that in both sexes the ET closure impacts the sensitivity of the middle and inner ear at frequencies used for communication with conspecifics. This study broadens our understanding of peripheral auditory mechanisms contributing to intraspecific acoustic communication in anurans.

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Animal Science and Zoology,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neuroethology of auditory systems: contributions in memory of Albert S. Feng;Journal of Comparative Physiology A;2022-12-30

2. Behind the mask(ing): how frogs cope with noise;Journal of Comparative Physiology A;2022-10-31

3. Albert Feng: father, friend, scientist, innovator (1944–2021);Journal of Comparative Physiology A;2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3