1. A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs,” Funkts. Anal. Prilozhen., 48:4 (2014), 26–46; English transl.: Functional Anal. Appl., 48:4 (2014), 256–271.
2. A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries,” Zap. Nauchn. Sem. POMI, 432 (2015), 83–104; English transl.: J. Math. Sci. (N. Y.), 209:6 (2015), 860–873.
3. A. M. Vershik and A. V. Malyutin, “Phase transition in the exit boundary problem for random walks on groups,” Funkts. Anal. Prilozhen., 49:2 (2015), 7–20; English transl.: Functional Anal. Appl., 49:2 (2015), 86–96.
4. A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence,” Uspekhi Mat. Nauk, 72:2(434) (2017), 67–146; English transl.: Russian Math. Surveys, 72:2 (2017), 257–333.
5. A. M. Vershik and A. V. Malyutin, “Infinite geodesics in the discrete Heisenberg group,” Zap. Nauchn. Sem. POMI, 462 (2017), 39–51; English transl.: J. Math. Sci. (N. Y.), 232:2 (2017), 121–128.