Pinch Analysis for Land-Constrained Agriculture Sector Planning

Author:

Andiappan VikneshORCID,Rajakal Jaya Prasanth,Wan Yoke Kin

Abstract

AbstractAgriculture is an essential economic sector as it plays an important role in providing growing populations with sufficient food. Thus, it is imperative for policymakers to plan sufficient food stockpiles based on consumption requirements while ensuring lands are used in an efficient manner for producing a range of crops. Land is a limited resource and should be utilised efficiently to meet crop/food production demands. Thus, this work presents land use pinch analysis (LUPA), to aid planning of crop based on land footprint. LUPA is a novel application that allows the decision maker to determine the minimum amount of low land footprint crop required to achieve reductions in land usage and to meet food product demands. To illustrate LUPA, this work provides a numerical case study intended to highlight the benefits and features of the methodology. The case study aims to determine the amount of low land footprint oil crop (e.g., palm oil) that could replace other oil crops to meet a given edible oil demand and achieve reductions in land footprint. Results from the case study suggest that policymakers can opt for around 1 million hectares of low land footprint oil crop to meet the specified edible oil demand and replacing about 8 million hectares of a higher land footprint oil crop in the process. The case study is revisited analyse the impact of crop yield on the planning. This evidently shows that LUPA can be used as a means for strategising land allocation and land use reductions to meet edible oil demands.

Funder

Swinburne University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Geography, Planning and Development,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Formulated Method for Streams Splitting in Heat Exchanger Network Design Using Pinch Analysis;Journal of Thermal Science and Engineering Applications;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3