Predicting Optimized Dissolution of Selected African Copperbelt Copper-cobalt-bearing Ores by Means of Neural Network Prediction and Response Surface Methodology Modeling

Author:

Mbuya BienvenuORCID,Mulaba-Bafubiandi Antoine F.

Abstract

AbstractWhile the uncertainty brought about by a varying feed mineralogy was taken into consideration, the paper investigated the modeling and prediction of the leaching behavior of complex copper-cobalt bearing ores, using an artificial neural network (ANN) with a backforward algorithm. The process optimization is further conducted using the response surface methodology (RSM) employing the Box-Behnken design (BBD). Seven (7) parameters were considered in a multiple linear regression according to the L12screening plan (27) of Plackett–Burman. From the seven parameters, four including solid percentage (15, 27.5, 40%), time (45, 90, 135 min), particle size passing (53, 75, 105 µm), and Fe2+ion concentration (2, 4, 6 g/L) are modeled with L27(34) BBD. With a composite desirability of 0.94, leaching yields of 93.46% Cu and 89.43% Co were obtained. The neural network algorithm used is the BFGS (Broyden, Fletcher, Goldfarb and Shanno) algorithm multilayer perceptron with the hyperbolic tangent activation function for the hidden layer and a linear activation function for the neural output. The Multilayer perceptron {4–7-1} structure was chosen as a suitable arrangement for Cu leaching. Comparing the predicted values and those obtained experimentally resulted with a correlation coefficient of 0.9552 for the data trained in the artificial neural network and 0.8742 for the data obtained with the response surface methodology. The synergy of these 2 techniques shows that the prediction can be achieved by means of the ANN giving the values of the root mean square errors (RMSE) of 0.0115, 0.00624, 0.0229, respectively, for the training, testing and validation sets for copper recovery while the correlational study between variables could be done through the RSM. The above includes only the 95% confidence interval while the remaining 5% would be uncertain. The above results and conclusion are accompanied by the relative uncertainty as the ore mineralogy varies. The combination of the synergistic use of ANN and RSM with the sensitivity analysis has approached the process to the physics of the Multi-criteria decision-making.Graphical Abstract

Funder

University of Johannesburg

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Geography, Planning and Development,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3