Learning-assisted optimization for transmission switching

Author:

Pineda SalvadorORCID,Morales Juan Miguel,Jiménez-Cordero Asunción

Abstract

AbstractThe design of new strategies that exploit methods from machine learning to facilitate the resolution of challenging and large-scale mathematical optimization problems has recently become an avenue of prolific and promising research. In this paper, we propose a novel learning procedure to assist in the solution of a well-known computationally difficult optimization problem in power systems: The Direct Current Optimal Transmission Switching (DC-OTS) problem. The DC-OTS problem consists in finding the configuration of the power network that results in the cheapest dispatch of the power generating units. With the increasing variability in the operating conditions of power grids, the DC-OTS problem has lately sparked renewed interest, because operational strategies that include topological network changes have proved to be effective and efficient in helping maintain the balance between generation and demand. The DC-OTS problem includes a set of binaries that determine the on/off status of the switchable transmission lines. Therefore, it takes the form of a mixed-integer program, which is NP-hard in general. In this paper, we propose an approach to tackle the DC-OTS problem that leverages known solutions to past instances of the problem to speed up the mixed-integer optimization of a new unseen model. Although our approach does not offer optimality guarantees, a series of numerical experiments run on a real-life power system dataset show that it features a very high success rate in identifying the optimal grid topology (especially when compared to alternative competing heuristics), while rendering remarkable speed-up factors.

Funder

HORIZON EUROPE European Research Council

Ministerio de Ciencia e Innovación

Universidad de Málaga

Publisher

Springer Science and Business Media LLC

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tight big-Ms for Optimal Transmission Switching;Electric Power Systems Research;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3