Deep Learning-based Assessment of Internal Carotid Artery Anatomy to Predict Difficult Intracranial Access in Endovascular Recanalization of Acute Ischemic Stroke

Author:

Nageler Gregor,Gergel Ingmar,Fangerau Markus,Breckwoldt Michael,Seker Fatih,Bendszus Martin,Möhlenbruch Markus,Neuberger UlfORCID

Abstract

Abstract Background Endovascular thrombectomy (EVT) duration is an important predictor for neurological outcome. Recently it was shown that an angle of ≤ 90° of the internal carotid artery (ICA) is predictive for longer EVT duration. As manual angle measurement is not trivial and time-consuming, deep learning (DL) could help identifying difficult EVT cases in advance. Methods We included 379 CT angiographies (CTA) of patients who underwent EVT between January 2016 and December 2020. Manual segmentation of 121 CTAs was performed for the aortic arch, common carotid artery (CCA) and ICA. These were used to train a nnUNet. The remaining 258 CTAs were segmented using the trained nnUNet with manual verification afterwards. Angles of left and right ICAs were measured resulting in two classes: acute angle ≤ 90° and > 90°. The segmentations together with angle measurements were used to train a convolutional neural network (CNN) determining the ICA angle. The performance was evaluated using Dice scores. The classification was evaluated using AUC and accuracy. Associations of ICA angle and procedural times was explored using median and Whitney‑U test. Results Median EVT duration for cases with ICA angle > 90° was 48 min and with ≤ 90° was 64 min (p = 0.001). Segmentation evaluation showed Dice scores of 0.94 for the aorta and 0.86 for CCA/ICA, respectively. Evaluation of ICA angle determination resulted in an AUC of 0.92 and accuracy of 0.85. Conclusion The association between ICA angle and EVT duration could be verified and a DL-based method for semi-automatic assessment with the potential for full automation was developed. More anatomical features of interest could be examined in a similar fashion.

Funder

Universitätsklinikum Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3