Nonenhanced Photon Counting CT of the Head

Author:

Michael Arwed EliasORCID,Schoenbeck Denise,Woeltjen Matthias Michael,Boriesosdick Jan,Kroeger Jan Robert,Moenninghoff Christoph,Horstmeier Sebastian,Niehoff Julius Henning,Kabbasch Christoph,Goertz Lukas,Borggrefe Jan

Abstract

Abstract Purpose Nonenhanced computed tomography (CT) of the head is among the most commonly performed CT examinations. The spectral information acquired by photon counting CT (PCCT) allows generation of virtual monoenergetic images (VMI). At the same time, image noise can be reduced using quantum iterative reconstruction (QIR). In this study, the image quality of VMI was evaluated depending on the keV level and the QIR level. Furthermore, the influence of the cranial calvaria was investigated to determine the optimal reconstruction for clinical application. Methods A total of 51 PCCT (NAEOTOM Alpha, Siemens Healthineers, Erlangen, Germany) of the head were retrospectively analyzed. In a quantitative analysis, gray and white matter ROIs were evaluated in different brain areas at all available keV levels and QIR levels with respect to signal, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The distance to the cranial calvaria of the ROIs was included in the analysis. This was followed by a qualitative reading by five radiologists including experienced neuroradiologists. Results In most ROIs, signal and noise varied significantly between keV levels (p < 0.0001). The CNR had a focal maximum at 66 keV and an absolute maximum at higher keV, slightly differently located depending on ROI and QIR level. With increasing QIR level, a significant reduction in noise was achieved (p < 0.0001) except just beneath the cranial calvaria. The cranial calvaria had a strong effect on the signal (p < 0.0001) but not on gray and white matter noise. In the qualitative reading, the 60 keV VMI was rated best. Conclusion In nonenhanced PCCT of the head the selected keV level of the VMI and the QIR level have a crucial influence on image quality in VMI. The 60 keV and 66 keV VMI with high QIR level provided optimal subjective and objective image quality for clinical use. The cranial calvaria has a significant influence on the visualization of the adjacent brain matter; currently, this substantially limits the use of low keV VMIs (< 60 keV).

Funder

Mühlenkreiskliniken

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3