Detection of Spinal Cord Multiple Sclerosis Lesions Using a 3D-PSIR Sequence at 1.5 T

Author:

Peters SönkeORCID,Neves Fernando Bueno,Huhndorf Monika,Gärtner Friederike,Stürner Klarissa,Jansen Olav,Ravesh Mona Salehi

Abstract

Abstract Purpose Multiple sclerosis (MS) is a prevalent autoimmune inflammatory disease. Besides cerebral manifestations, an affection of the spinal cord is typical; however, imaging of the spinal cord is difficult due to its anatomy. The aim of this study was to assess the diagnostic value of a 3D PSIR pulse sequencing at a 1.5 T magnetic field strength for both the cervical and thoracic spinal cord. Methods Phase sensitive inversion recovery (PSIR), short tau inversion recovery (STIR) and T2-weighted (T2-w) images of the spinal cord of 50 patients were separately evaluated by three radiologists concerning the number and location of MS lesions. Furthermore, lesion to cord contrast ratios were determined for the cervical and thoracic spinal cord. Results Of the lesions 54.81% were located in the cervical spinal cord, 42.26% in the thoracic spinal cord and 2.93% in the conus medullaris. The PSIR images showed a higher sensitivity for lesion detection in the cervical and thoracic spinal cord (77.10% and 72.61%, respectively) compared to the STIR images (58.63% and 59.10%, respectively) and the T2-w images (59.95% and 59.52%, respectively). The average lesion to cord contrast ratio was significantly higher in the PSIR images compared to the STIR images (p < 0.001) and the T2-w images (p < 0.001). Conclusion Evaluation of the spinal cord with a 3D PSIR sequence at a magnetic field strength of 1.5 T is feasible with a high sensitivity for the detection of spinal MS lesions for the cervical as well as the thoracic segments. In combination with other pulse sequences it might become a valuable addition in an advanced imaging protocol.

Funder

Universitätsklinikum Schleswig-Holstein - Campus Kiel

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3