Prone Dynamic CT Myelography in Spontaneous Intracranial Hypotension

Author:

Lützen NiklasORCID,Barvulsky Aleman Enrique,Fung Christian,Beck Juergen,Urbach Horst

Abstract

Abstract Background and Purpose The diagnostic work-up in patients with spontaneous intracranial hypotension (SIH) and spinal longitudinal extradural CSF collection (SLEC) on magnetic resonance imaging (MRI) comprises dynamic digital subtraction myelography (dDSM) in prone position for leak detection. Dynamic computed tomography (CT) myelography (dCT-M) in prone position follows if the leak is not unequivocally located. A drawback of dCT‑M is a high radiation dose. This study evaluates the diagnostic needs of dCT-M examinations and measures to reduce radiation doses. Methods Frequency, leak sites, length and number of spiral acquisitions, DLP and effective doses of dCT‑M were retrospectively recorded in patients with ventral dural tears. Results Of 42 patients with ventral dural tears, 8 underwent 11 dCT‑M when the leak was not unequivocally shown on digital subtraction myelography. The median number of spiral acquisitions was 4 (range 3–7) and the mean effective radiation dose 30.6 mSv (range 13.1–62.16 mSv) mSv. Five of eight leaks were located in the upper thoracic spine (range C7/Th1–Th2/3). Bolus tracking of intrathecal contrast agent in dCT‑M was used to limit the number and length of spiral acquisitions. Discussion A dCT‑M in prone position to localize a ventral dural tear is needed in every fifth patient with a SLEC on MRI. It is typically needed when the leak is located in the upper thoracic spine and when patients have broad shoulders. Measures to reduce the radiation dose include bolus tracking or to repeat the DSM with adjusted positioning of patient.

Funder

Universitätsklinikum Freiburg

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spinal Presentation of Spontaneous Intracranial Hypotension;Journal of the Korean Society of Radiology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3