3D cell cultures, as a surrogate for animal models, enhance the diagnostic value of preclinical in vitro investigations by adding information on the tumour microenvironment: a comparative study of new dual-mode HDAC inhibitors

Author:

Bär Sofia I.ORCID,Biersack BernhardORCID,Schobert RainerORCID

Abstract

AbstractAnchorage-independent 3D-cultures of multicellular tumour spheroids (MCTS) and in vitro microtumours of cancer cells can provide upfront information on the effects of anticancer drug candidates, tantamount to that obtained from animal xenograft studies. Unlike 2D cancer cell cultures, 3D-models take into account the influence of the tumour microenvironment and the location dependence of drug effects and accumulation. We exemplified this by comparison of the effects of two new dual-mode anticancer agents, Troxbam and Troxham, and their monomodal congeners SAHA (suberoylanilide hydroxamic acid) and CA-4 (combretastatin A-4). We assessed the growth of MCTS of HCT116wt human colon carcinoma cells exposed to these compounds, as well as the spatial distribution of dead HCT116wt cells in these MCTS. Also, fluorescence imaging of live and fixed MCTS was used to assess the type of cellular death induced by test compounds. Furthermore, an innovative perfusion bioreactor system was used to grow microtumours in the presence or absence of test compounds. Both new investigational compounds led to significant reductions of the size of such MCTS and also of corresponding in vitro microtumours by inducing caspase-9 dependent apoptosis and elevated levels of reactive oxygen species. 3D multicellular tumour spheroids are easy to grow and employ for compound tests in the familiar well-plate set-up. Together with 3D microtumours grown at scaffolds in continuously perfused bioreactors they allow to study, early on in the course of drug evaluations, the communication of tumour cells with their microenvironment to an extent hitherto available only in animal experiments.

Funder

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3