On the questions of asymptotic recoverability of information and subsystems in quantum gravity

Author:

Giddings Steven B.

Abstract

Abstract A longstanding question in quantum gravity regards the localization of quantum information; one way to formulate this question is to ask how subsystems can be defined in quantum-gravitational systems. The gauge symmetry and necessity of solving the gravitational constraints appear to imply that the answers to this question here are different than in finite quantum systems, or in local quantum field theory. Specifically, the constraints can be solved by providing a “gravitational dressing” for the underlying field-theory operators, but this modifies their locality properties. It has been argued that holography itself may be explained through this role of the gauge symmetry and constraints, at the nonperturbative level, but there are also subtleties in constructing a holographic map in this approach. There are also claims that holography is implied even by perturbative solution of the constraints. This short note provides further examination of these questions, and in particular investigates to what extent perturbative or nonperturbative solution of the constraints implies that information naïvely thought to be localized can be recovered by asymptotic measurements, and the relevance of this in defining subsystems. In the leading perturbative case, the relevant effects are seen to be exponentially suppressed and asymptotically vanishing, for massive fields. These questions are, for example, important in sharply characterizing the unitarity problem for black holes.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-dressed local operators in the AdS/CFT correspondence;Physical Review D;2023-10-30

2. Holography of information in massive gravity using Dirac brackets;Journal of High Energy Physics;2023-06-19

3. Holography of information in AdS/CFT;Journal of High Energy Physics;2022-12-16

4. Quantum evolution of the Hawking state for black holes;Physical Review D;2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3