Tensor completion with noisy side information

Author:

Bertsimas DimitrisORCID,Pawlowski Colin

Abstract

AbstractWe develop a new model for tensor completion which incorporates noisy side information available on the rows and columns of a 3-dimensional tensor. This method learns a low rank representation of the data along with regression coefficients for the observed noisy features. Given this model, we propose an efficient alternating minimization algorithm to find high-quality solutions that scales to large data sets. Through extensive computational experiments, we demonstrate that this method leads to significant gains in out-of-sample accuracy filling in missing values in both simulated and real-world data. We consider the problem of imputing drug response in three large-scale anti-cancer drug screening data sets: the Genomics of Drug Sensitivity in Cancer (GDSC), the Cancer Cell Line Encyclopedia (CCLE), and the Genentech Cell Line Screening Initiative (GCSI). On imputation tasks with 20% to 80% missing data, we show that the proposed method matches or outperforms state-of-the-art methods including the original tensor model and a multilevel mixed effects model. With 80% missing data, improves the $$R^2$$ R 2 from 0.404 to 0.552 in the GDSC data set, 0.407 to 0.524 in the CCLE data set, and 0.331 to 0.453 in the GCSI data set compared to the tensor model which does not take into account genomic side information.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference58 articles.

1. Acar, E., Kolda, T.G., & Dunlavy, D.M. (2011). All-at-once optimization for coupled matrix and tensor factorizations. arXiv preprint arXiv:1105.3422

2. Azuaje, F. (2016). Computational models for predicting drug responses in cancer research. Briefings in Bioinformatics, 18(5), 820–829.

3. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483(7391), 603.

4. Bell, R. M., & Koren, Y. (2007). Lessons from the Netflix prize challenge. SiGKDD Explorations, 9(2), 75–79.

5. Bennett, J., & Lanning, S., et al. (2007). The Netflix prize. In: Proceedings of KDD Cup and Workshop, New York, NY, USA, vol 2007, p 35

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3