1. Abdar, M., Pourpanah, F., Hussain, S., et al. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297.
2. Abe, N., Zadrozny, B., & Langford, J. (2006). Outlier detection by active learning. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006, 504–509.
3. Aggarwal, C., Kong, X., Gu, Q., et al. (2014). Active Learning: A Survey, Data Classification: Algorithms and Applications. CRC Press.
4. Bondu, A., Lemaire, V. & Boullé, M. (2010). Exploration vs. exploitation in active learning: A Bayesian approach. In The 2010 international joint conference on neural networks (IJCNN) (pp. 1–7).
5. Charpentier, B., Zügner, D., & Günnemann, S., et al. (2020). Posterior network: Uncertainty estimation without OOD samples via density-based pseudo-counts. In H. Larochelle, M. Ranzato, & R. Hadsell (Eds.), Advances in Neural Information Processing Systems (Vol. 33, pp. 1356–1367). Curran Associates Inc.