Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Ahfock, D., & McLachlan, G. J. (2021). Harmless label noise and informative soft-labels in supervised classification. Computational Statistics and Data Analysis, 161, 107253.
2. Arazo, E., Ortego, D., & Albert, P., et al. (2019). Unsupervised label noise modeling and loss correction. In International conference on machine learning, PMLR (pp. 312–321).
3. Bahri, D., Jiang, H., & Gupta, M. (2020). Deep k-nn for noisy labels. In International conference on machine learning, PMLR (pp. 540–550).
4. Blanco, V., Japón, A., & Puerto, J. (2022). Robust optimal classification trees under noisy labels. Advances in Data Analysis and Classification, 16(1), 155–179.
5. Burl, M. C., & Wetzler, P. G. (2011). Onboard object recognition for planetary exploration. Machine Learning, 84(3), 341–367.