Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference39 articles.
1. Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A. (2017). Network dissection: Quantifying interpretability of deep visual representations. transactions on pattern analysis and machine intelligence.
2. Brostow, G. J., Fauqueur, J., & Cipolla, R. (2009). Semantic object classes in video: A high-definition ground truth database. Pattern Recognition Letters, 30(2), 88–97.
3. Bulo, S. R., Neuhold, G., & Kontschieder, P. (2017) Loss max-pooling for semantic image segmentation. In Proceedings of the International Conference on Computer Vision.
4. Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking Atrous Convolution for Semantic Image Segmentation
5. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., & Su, J.K. (2019). This looks like that: Deep learning for interpretable image recognition.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献