1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from
https://www.tensorflow.org/
. Accessed 6 Sept 2018.
2. Anderson, B., Quist, D., Neil, J., Storlie, C., & Lane, T. (2011). Graph-based malware detection using dynamic analysis. Journal of Computer Virology, 7(4), 247–258.
3. Argyriou, A., Evgeniou, T., & Pontil, M. (2007). Multi-task feature learning. In B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems 19 (pp. 41–48). MIT Press.
4. Arora, A., Garg, S., & Peddoju, S. K. (2014). Malware detection using network traffic analysis in android based mobile devices. In International conference on next generation mobile apps, services and technologies (pp. 66–71).
5. Bartos, K., & Sofka, M. (2015). Robust representation for domain adaptation in network security. In European conference on machine learning and principles and practice of knowledge discovery in databases (pp. 116–132). Springer.