1. Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Lerman, K., Harutyunyan, H., Ver Steeg, G., & Galstyan, A. (2019). Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. In International conference on machine learning (pp. 21–29). PMLR.
2. Chen, Y., Wu, L., & Zaki, M. (2020). Iterative deep graph learning for graph neural networks: Better and robust node embeddings. Advances in Neural Information Processing Systems, 33, 19314–19326.
3. Chien, E., Peng, J., Li, P., & Milenkovic, O. (2020). Adaptive universal generalized pagerank graph neural network. In International conference on learning representations.
4. Corizzo, R., & Slenn, T. (2022). Distributed node classification with graph attention networks. In 2022 IEEE international conference on big data (big data) (pp. 3720–3725). IEEE.
5. Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., & Yu, P. S. (2020). Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 315–324).