Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Chen, D., Yuan, L., Liao, J., Yu, N., & Hua, G. (2017). Stylebank: An explicit representation for neural image style transfer. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2770–2779). https://doi.org/10.48550/arXiv.1703.09210.
2. Chen, H., Wang, Z., Zhang, H., Zuo, Z., Ailin Li, W. X., & Lu, D. (2021). Artistic style transfer with internal-external learning and contrastive learning. In Advances in neural information processing systems.
3. Chen, H., Zhao, L., Zhang, H., Wang, Z., Zuo, Z., Li, A., Xing, W., & Lu, D. (2021). Diverse image style transfer via invertible cross-space mapping. In Proceedings of the international conference on computer vision (ICCV). https://doi.org/10.1109/ICCV48922.2021.01461
4. Chiu, T.-Y., & Gurari, D. (2022). Photowct 2: Compact autoencoder for photorealistic style transfer resulting from blockwise training and skip connections of high-frequency residuals. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV) (pp. 2978–2987). https://doi.org/10.1109/WACV51458.2022.00303.
5. Deng, Y., Tang, F., Dong, W., Huang, H., Ma, C., & Xu, C. (2021). Arbitrary video style transfer via multi-channel correlation. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, pp. 1210–1217). https://doi.org/10.48550/arXiv.2009.08003.