Online multi-label dependency topic models for text classification

Author:

Burkhardt SophieORCID,Kramer Stefan

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference36 articles.

1. AlSumait, L., Barbar, D., & Domeniconi, C. (2008). On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking. In 2008 eighth IEEE international conference on data mining (pp. 3–12).

2. Asuncion, A., Welling, M., Smyth, P., & Teh, Y. W. (2009). On smoothing and inference for topic models. In Proceedings of the 25th conference on uncertainty in artificial intelligence, UAI ’09 (pp. 27–34). Arlington, Virginia, United States: AUAI Press.

3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al. (2007). Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 19, 153.

4. Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). New York: Springer.

5. Canini, K. R., Shi, L., & Griffiths, T. L. (2009). Online inference of topics with latent dirichlet allocation. In Proceedings of the international conference on artificial intelligence and statistics (pp. 65–72).

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-label feature selection via spectral clustering-based label enhancement and manifold distribution consistency;International Journal of Machine Learning and Cybernetics;2024-05-09

2. Multilabel Feature Selection via Shared Latent Sublabel Structure and Simultaneous Orthogonal Basis Clustering;IEEE Transactions on Neural Networks and Learning Systems;2024

3. Dependency-Aware Neural Topic Model;Information Processing & Management;2024-01

4. Text classification using deep learning techniques: a bibliometric analysis and future research directions;Benchmarking: An International Journal;2023-08-18

5. Design And Analysis Of Insider Threat Detection And Prediction System Using Machine Learning Techniques;2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT);2023-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3