Contrastive counterfactual visual explanations with overdetermination

Author:

White AdamORCID,Ngan Kwun Ho,Phelan James,Ryan Kevin,Afgeh Saman Sadeghi,Reyes-Aldasoro Constantino Carlos,Garcez Artur d’Avila

Abstract

AbstractA novel explainable AI method called CLEAR Image is introduced in this paper. CLEAR Image is based on the view that a satisfactory explanation should be contrastive, counterfactual and measurable. CLEAR Image seeks to explain an image’s classification probability by contrasting the image with a representative contrast image, such as an auto-generated image obtained via adversarial learning. This produces a salient segmentation and a way of using image perturbations to calculate each segment’s importance. CLEAR Image then uses regression to determine a causal equation describing a classifier’s local input–output behaviour. Counterfactuals are also identified that are supported by the causal equation. Finally, CLEAR Image measures the fidelity of its explanation against the classifier. CLEAR Image was successfully applied to a medical imaging case study where it outperformed methods such as Grad-CAM and LIME by an average of 27% using a novel pointing game metric. CLEAR Image also identifies cases of causal overdetermination, where there are multiple segments in an image that are sufficient individually to cause the classification probability to be close to one.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference49 articles.

1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. (2018). Sanity checks for saliency maps. arXiv preprint arXiv:1810.03292.

2. Arora, S., Risteski, A., & Zhang, Y. (2022). Do GANs learn the distribution? Some theory and empirics.

3. Baumgartner, M. (2009). Inferring causal complexity. Sociological Methods & Research, 38(1), 71–101.

4. Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., & Yang, X. (2022). End-to-end reconstruction-classification learning for face forgery detection. In 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE.

5. Chang, C.-H., Creager, E., Goldenberg, A., & Duvenaud, D. (2018a). Explaining image classifiers by counterfactual generation.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3