1. Abbasnejad, E., Sanner, S., Bonilla, E. V., & Poupart, P., et al. (2013). Learning community-based preferences via dirichlet process mixtures of Gaussian processes. In Twenty-third international joint conference on artificial intelligence (pp. 1213–1219). Retrieved January 17, 2020 from https://www.ijcai.org/Proceedings/13/Papers/183.pdf.
2. Adams, R. P., Dahl, G. E., & Murray, I. (2010). Incorporating side information in probabilistic matrix factorization with Gaussian processes. In Proceedings of the twenty-sixth conference on uncertainty in artificial intelligence (pp. 1–9). AUAI Press.
3. Ahn, S., Korattikara, A., Liu, N., Rajan, S., & Welling, M. (2015). Large-scale distributed Bayesian matrix factorization using stochastic gradient MCMC. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 9–18). ACM.
4. Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (pp. 1027–1035). Society for Industrial and Applied Mathematics.
5. Banerji, M., Lahav, O., Lintott, C. J., Abdalla, F. B., Schawinski, K., Bamford, S. P., et al. (2010). Galaxy zoo: Reproducing galaxy morphologies via machine learning. Monthly Notices of the Royal Astronomical Society, 406(1), 342–353.