Scalable Bayesian preference learning for crowds

Author:

Simpson EdwinORCID,Gurevych Iryna

Abstract

AbstractWe propose a scalable Bayesian preference learning method for jointly predicting the preferences of individuals as well as the consensus of a crowd from pairwise labels. Peoples’ opinions often differ greatly, making it difficult to predict their preferences from small amounts of personal data. Individual biases also make it harder to infer the consensus of a crowd when there are few labels per item. We address these challenges by combining matrix factorisation with Gaussian processes, using a Bayesian approach to account for uncertainty arising from noisy and sparse data. Our method exploits input features, such as text embeddings and user metadata, to predict preferences for new items and users that are not in the training set. As previous solutions based on Gaussian processes do not scale to large numbers of users, items or pairwise labels, we propose a stochastic variational inference approach that limits computational and memory costs. Our experiments on a recommendation task show that our method is competitive with previous approaches despite our scalable inference approximation. We demonstrate the method’s scalability on a natural language processing task with thousands of users and items, and show improvements over the state of the art on this task. We make our software publicly available for future work (https://github.com/UKPLab/tacl2018-preference-convincing/tree/crowdGPPL).

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference70 articles.

1. Abbasnejad, E., Sanner, S., Bonilla, E. V., & Poupart, P., et al. (2013). Learning community-based preferences via dirichlet process mixtures of Gaussian processes. In Twenty-third international joint conference on artificial intelligence (pp. 1213–1219). Retrieved January 17, 2020 from https://www.ijcai.org/Proceedings/13/Papers/183.pdf.

2. Adams, R. P., Dahl, G. E., & Murray, I. (2010). Incorporating side information in probabilistic matrix factorization with Gaussian processes. In Proceedings of the twenty-sixth conference on uncertainty in artificial intelligence (pp. 1–9). AUAI Press.

3. Ahn, S., Korattikara, A., Liu, N., Rajan, S., & Welling, M. (2015). Large-scale distributed Bayesian matrix factorization using stochastic gradient MCMC. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 9–18). ACM.

4. Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (pp. 1027–1035). Society for Industrial and Applied Mathematics.

5. Banerji, M., Lahav, O., Lintott, C. J., Abdalla, F. B., Schawinski, K., Bamford, S. P., et al. (2010). Galaxy zoo: Reproducing galaxy morphologies via machine learning. Monthly Notices of the Royal Astronomical Society, 406(1), 342–353.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GMAT: A Graph Modeling Method for Group Preference Prediction;Journal of Systems Science and Systems Engineering;2024-02-24

2. Deciphering Personal Argument Styles – A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences;Lecture Notes in Computer Science;2024

3. Towards Cognitively More Plausible Models;Cognitive Plausibility in Natural Language Processing;2023-10-31

4. Behavioral Patterns;Cognitive Plausibility in Natural Language Processing;2023-10-31

5. Recovering Quality Scores in Noisy Pairwise Subjective Experiments Using Negative Log-Likelihood;2023 IEEE International Conference on Image Processing (ICIP);2023-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3