Author:
Sun Jun,Wu Xiaojun,Palade Vasile,Fang Wei,Shi Yuhui
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference67 articles.
1. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 12, 281–305.
2. Bonyadi, M. R., Michalewicz, Z., & Li, X. (2014). An analysis of the velocity updating rule of the particle swarm optimization algorithm. Journal of Heuristics, 20(4), 417–452.
3. Bratton, D., & Kennedy, J. (2007). Defining a standard for particle swarm optimization. In Proceedings of IEEE swarm intelligence symposium, (pp. 120–127). New York: IEEE Press.
4. Bull, A. (2011). Convergence rates of efficient global optimization algorithms. Journal of Machine Learning Research, 12, 2879–2904.
5. Cleghorn, W. C., & Engelbrecht, A. P. (2014). Particle swarm convergence: Standardized analysis and topological influence. Lecture Notes in Computer Science, 8867, pp. 134–145.
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献