Abstract
AbstractAutomated fraud detection can assist organisations to safeguard user accounts, a task that is very challenging due to the great sparsity of known fraud transactions. Many approaches in the literature focus on credit card fraud and ignore the growing field of online banking. However, there is a lack of publicly available data for both. The lack of publicly available data hinders the progress of the field and limits the investigation of potential solutions. With this work, we: (a) introduce FraudNLP, the first anonymised, publicly available dataset for online fraud detection, (b) benchmark machine and deep learning methods with multiple evaluation measures, (c) argue that online actions do follow rules similar to natural language and hence can be approached successfully by natural language processing methods.
Funder
Athens University of Economics & Business
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fraud Detection in E-Commerce Transactions Using Machine Learning Techniques and Quantum Networks;Advances in Computational Intelligence and Robotics;2024-08-02
2. Improvements in natural language understanding using deep learning;Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024);2024-07-05