Author:
Hazan Elad,Kale Satyen,Warmuth Manfred K.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference24 articles.
1. Abrudan, T., Eriksson, J., Koivunen, V. (2008a). Efficient Riemannian algorithms for optimization under unitary matrix constraint. In IEEE international conference on acoustics, speech and signal processing (ICASSP ’08), pp. 2353–2356. IEEE, March (2008).
2. Abrudan, T. E., Eriksson, J., & Koivunen, V. (2008b). Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transactions on Signal Processing, 56(3), 1134–1146.
3. Arora, R. (2009). On learning rotations. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (Vol. 22, pp. 55–63). Cambridge: MIT Press.
4. Bernstein, D. S. (2009). Matrix mathematics: Theory, facts, and formulas. Princeton: Princeton University Press.
5. Cesa-Bianchi, N., Long, P., & Warmuth, M. K. (1996a). Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent. IEEE Transactions on Neural Networks, 7(2), 604–619.