A framework for training larger networks for deep Reinforcement learning

Author:

Ota KeiORCID,Jha Devesh K.,Kanezaki Asako

Abstract

AbstractThe success of deep learning in computer vision and natural language processing communities can be attributed to the training of very deep neural networks with millions or billions of parameters, which can then be trained with massive amounts of data. However, a similar trend has largely eluded the training of deep reinforcement learning (RL) algorithms where larger networks do not lead to performance improvement. Previous work has shown that this is mostly due to instability during the training of deep RL agents when using larger networks. In this paper, we make an attempt to understand and address the training of larger networks for deep RL. We first show that naively increasing network capacity does not improve performance. Then, we propose a novel method that consists of (1) wider networks with DenseNet connection, (2) decoupling representation learning from the training of RL, and (3) a distributed training method to mitigate overfitting problems. Using this three-fold technique, we show that we can train very large networks that result in significant performance gains. We present several ablation studies to demonstrate the efficacy of the proposed method and some intuitive understanding of the reasons for performance gain. We show that our proposed method outperforms other baseline algorithms on several challenging locomotion tasks.

Publisher

Springer Science and Business Media LLC

Reference66 articles.

1. Achiam, J., Knight, E., & Abbeel, P. (2019). Towards characterizing divergence in deep q-learning. arXiv preprint arXiv:1903.08894

2. Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman, K., Herzog, A., Ho, D., Hsu, J., Ibarz, J., Ichter, B., Irpan, A., Jang, E., Ruano, R.J., Jeffrey, K., Jesmonth, S., Joshi, N., Julian, R., Kalashnikov, D., Kuang, Y., Lee, K.-H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor, P., Quiambao, J., Rao, K., Rettinghouse, J., Reyes, D., Sermanet, P., Sievers, N., Tan, C., Toshev, A., Vanhoucke, V., Xia, F., Xiao, T., Xu, P., Xu, S., Yan, M., & Zeng, A. (2022). Do as i can and not as i say: Grounding language in robotic affordances. arXiv Preprint arXiv:2204.01691

3. Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin, O., Michalski, M., Gelly, S., & Bachem, O. (2021). What matters in on-policy reinforcement learning? A large-scale empirical study. In Proceedings of international conference on learning representations (ICLR).

4. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O., & Zaremba, W. (2017). Hindsight experience replay. In Proceedings of advances in neural information processing systems (NeurIPS) (Vol. 30).

5. Aviral Kumar, D. G. Rishabh Agarwal, & Levine, S. (2021). Implicit under-parameterization inhibits data-efficient deep reinforcement learning. In Proceedings of international conference on learning representations (ICLR).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3