LIMEcraft: handcrafted superpixel selection and inspection for Visual eXplanations

Author:

Hryniewska WeronikaORCID,Grudzień Adrianna,Biecek Przemysław

Abstract

AbstractThe increased interest in deep learning applications, and their hard-to-detect biases result in the need to validate and explain complex models. However, current explanation methods are limited as far as both the explanation of the reasoning process and prediction results are concerned. They usually only show the location in the image that was important for model prediction. The lack of possibility to interact with explanations makes it difficult to verify and understand exactly how the model works. This creates a significant risk when using the model. The risk is compounded by the fact that explanations do not take into account the semantic meaning of the explained objects. To escape from the trap of static and meaningless explanations, we propose a tool and a process called LIMEcraft. LIMEcraft enhances the process of explanation by allowing a user to interactively select semantically consistent areas and thoroughly examine the prediction for the image instance in case of many image features. Experiments on several models show that our tool improves model safety by inspecting model fairness for image pieces that may indicate model bias. The code is available at: http://github.com/MI2DataLab/LIMEcraft.

Funder

Narodowym Centrum Nauki

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference30 articles.

1. Ahern, I., Noack, A., Guzman-Nateras, L., Dou, D., Li, B., & Huan, J. (2019). Normlime: A new feature importance metric for explaining deep neural networks. CoRR abs/1909.04200 . Retrieved from http://arxiv.org/abs/1909.04200

2. Alvarez-Melis, D., & Jaakkola, T. S. (2018). On the robustness of interpretability methods. In Proceedings of the 2018 icml workshop on human interpretability in machine learning. Retrieved from http://arxiv.org/abs/1806.08049

3. Burns, C., Thomason, J., & Tansey, W. (2019). Interpreting black box models via hypothesis testing (pp. 47–57). Association for Computing Machinery, Inc. Retrieved from https://arxiv.org/abs/1904.00045v3. 10.1145/3412815.3416889

4. Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N. (2018). Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE winter conference on applications of computer vision (WACV). Retrieved from http://dx.doi.org/10.1109/WACV.2018.00097. 10.1109/wacv.2018.00097

5. Damelin, S. B., & Hoang, N. S. (2018). On surface completion and image inpainting by biharmonic functions: Numerical aspects, vol. 2018. Hindawi Limited 10.1155/2018/3950312

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3