1. Banner, R., Nahshan, Y., Hoffer, E., Soudry, D. (2018) Post-training 4-bit quantization of convolution networks for rapid-deployment. arXiv preprint arXiv:181005723http://arxiv.org/abs/1810.05723
2. Baskin, C., Liss, N., Chai, Y., Zheltonozhskii, E., Schwartz, E., Girayes, R., Mendelson, A., Bronstein, A. M. (2018) Nice: Noise injection and clamping estimation for neural network quantization. arXiv preprint arXiv:181000162http://arxiv.org/abs/1810.00162
3. Berger, T. (1972). Optimum quantizers and permutation codes. IEEE Transactions on Information Theory, 18(6), 759–765.
4. Bethge, J., Yang, H., Bornstein, M., Meinel, C., (2019) Back to simplicity: How to train accurate bnns from scratch? arXiv preprint arXiv:190608637http://arxiv.org/abs/1906.08637
5. Brent, R. P. (2013) Algorithms for minimization without derivatives. Courier Corporation.