Domain adversarial neural networks for domain generalization: when it works and how to improve

Author:

Sicilia Anthony,Zhao Xingchen,Hwang Seong JaeORCID

Abstract

AbstractTheoretically, domain adaptation is a well-researched problem. Further, this theory has been well-used in practice. In particular, we note the bound on target error given by Ben-David et al. (Mach Learn 79(1–2):151–175, 2010) and the well-known domain-aligning algorithm based on this work using Domain Adversarial Neural Networks (DANN) presented by Ganin and Lempitsky (in International conference on machine learning, pp 1180–1189). Recently, multiple variants of DANN have been proposed for the related problem of domain generalization, but without much discussion of the original motivating bound. In this paper, we investigate the validity of DANN in domain generalization from this perspective. We investigate conditions under which application of DANN makes sense and further consider DANN as a dynamic process during training. Our investigation suggests that the application of DANN to domain generalization may not be as straightforward as it seems. To address this, we design an algorithmic extension to DANN in the domain generalization case. Our experimentation validates both theory and algorithm.

Funder

Yonsei University

Institute of Information and communications Technology Planning And Evaluations

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference63 articles.

1. Albuquerque, I., Monteiro, J., Falk, T.H., & Mitliagkas, I. (2020). Adversarial target-invariant representation learning for domain generalization. arXiv preprint arXiv:1911.00804

2. Balaji, Y., Sankaranarayanan, S., & Chellappa, R. (2018). Metareg: Towards domain generalization using meta-regularization. In Advances in Neural Information Processing Systems (pp. 998–1008).

3. Bartlett, P. L., Harvey, N., Liaw, C., & Mehrabian, A. (2019). Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks. JMLR, 20, 2285–2301.

4. Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2007). Analysis of representations for domain adaptation. In Advances in Neural Information Processing Systems, pp. 137–144

5. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010a). A theory of learning from different domains. Machine Learning, 79(1–2), 151–175.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3