Multiway p-spectral graph cuts on Grassmann manifolds

Author:

Pasadakis Dimosthenis,Alappat Christie Louis,Schenk OlafORCID,Wellein Gerhard

Abstract

AbstractNonlinear reformulations of the spectral clustering method have gained a lot of recent attention due to their increased numerical benefits and their solid mathematical background. We present a novel direct multiway spectral clustering algorithm in the p-norm, for $$p\in (1,2]$$ p ( 1 , 2 ] . The problem of computing multiple eigenvectors of the graph p-Laplacian, a nonlinear generalization of the standard graph Laplacian, is recasted as an unconstrained minimization problem on a Grassmann manifold. The value of p is reduced in a pseudocontinuous manner, promoting sparser solution vectors that correspond to optimal graph cuts as p approaches one. Monitoring the monotonic decrease of the balanced graph cuts guarantees that we obtain the best available solution from the p-levels considered. We demonstrate the effectiveness and accuracy of our algorithm in various artificial test-cases. Our numerical examples and comparative results with various state-of-the-art clustering methods indicate that the proposed method obtains high quality clusters both in terms of balanced graph cut metrics and in terms of the accuracy of the labelling assignment. Furthermore, we conduct studies for the classification of facial images and handwritten characters to demonstrate the applicability in real-world datasets.

Funder

chweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Università della Svizzera italiana

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiway Spectral Graph Partitioning: Cut Functions, Cheeger Inequalities, and a Simple Algorithm;SIAM Journal on Matrix Analysis and Applications;2024-01-11

2. Sparse Quadratic Approximation for Graph Learning;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-09-01

3. RCDVis: interactive rare category detection on graph data;Journal of Visualization;2021-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3