Can cross-domain term extraction benefit from cross-lingual transfer and nested term labeling?

Author:

Tran Hanh Thi Hong,Martinc Matej,Repar Andraz,Ljubešić Nikola,Doucet Antoine,Pollak SenjaORCID

Abstract

AbstractAutomatic term extraction (ATE) is a natural language processing task that eases the effort of manually identifying terms from domain-specific corpora by providing a list of candidate terms. In this paper, we treat ATE as a sequence-labeling task and explore the efficacy of XLMR in evaluating cross-lingual and multilingual learning against monolingual learning in the cross-domain ATE context. Additionally, we introduce NOBI, a novel annotation mechanism enabling the labeling of single-word nested terms. Our experiments are conducted on the ACTER corpus, encompassing four domains and three languages (English, French, and Dutch), as well as the RSDO5 Slovenian corpus, encompassing four additional domains. Results indicate that cross-lingual and multilingual models outperform monolingual settings, showcasing improved F1-scores for all languages within the ACTER dataset. When incorporating an additional Slovenian corpus into the training set, the multilingual model exhibits superior performance compared to state-of-the-art approaches in specific scenarios. Moreover, the newly introduced NOBI labeling mechanism enhances the classifier’s capacity to extract short nested terms significantly, leading to substantial improvements in Recall for the ACTER dataset and consequentially boosting the overall F1-score performance.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Republic of Slovenia and the European Union

Région Nouvelle Aquitaine

Campus France

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., & Vollgraf, R. (2019). Flair: An easy-to-use framework for state-of-the-art nlp. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations) (pp. 54–59).

2. Amjadian, E., Inkpen, D., Paribakht, T., & Faez, F. (2016). Local-Global Vectors to Improve Unigram Terminology Extraction. In Proceedings of the 5th International Workshop on Computational Terminology (Computerm2016) (pp. 2–11).

3. Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., & Stoyanov, V. (2020). Unsupervised cross-lingual representation learning at scale. In ACL.

4. Daille, B., Gaussier, É., & Langé, J. M. (1994). Towards Automatic Extraction of Monolingual and Bilingual Terminology. In COLING 1994 Volume 1: The 15th International Conference on Computational Linguistics.

5. Damerau, F. J. (1990). Evaluating computer-generated domain-oriented vocabularies. Information Processing and Management, 26(6), 791–801.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3