1. Ahn, H., Cha, S., Lee, D., & Moon, T. (2019). Uncertainty-based continual learning with adaptive regularization. In Advances in Neural Information Processing Systems (pp. 4392–4402).
2. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., & Tuytelaars, T. (2018). Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 139–154).
3. Bach, T. X., Anh, N. D., Linh, N. V., & Than, K. (2023). Dynamic transformation of prior knowledge into Bayesian models for data streams. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3742–3750.
4. Benzing, F. (2020). Understanding regularisation methods for continual learning. In Workshop of Advances in Neural Information Processing Systems.
5. Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural network. In International conference on machine learning (pp. 1613–1622). PMLR.