1. Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous driving. In 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 11618–11628). IEEE Computer Society.
2. Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., & Su, H., & Xiao, J. (2015). Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012.
3. Cohen, T., & Welling, M. (2016). Group equivariant convolutional networks. In International conference on machine learning (pp. 2990–2999).
4. Cohen, T. S., & Welling, M. (2017). Steerable CNNs. In International conference on learning representations.
5. Cohen, T. S., Geiger, M., & Weiler, M. (2019). A general theory of equivariant CNNs on homogeneous spaces. In Advances in neural information processing systems (NeurIPS) (Vol. 32).