Author:
Kuznetsov Vitaly,Mohri Mehryar
Funder
National Science Foundation
Division of Computing and Communication Foundations
Google
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference38 articles.
1. Agarwal, A., & Duchi, J. (2013). The generalization ability of online algorithms for dependent data. IEEE Transactions on Information Theory, 59(1), 573–587.
2. Alquier, P., & Wintenberger, O. (2010). Model selection for weakly dependent time series forecasting. Tech. Rep. 2010-39, Centre de Recherche en Economie et Statistique.
3. Alquier, P., Li, X., & Wintenberger, O. (2014). Prediction of time series by statistical learning: General losses and fast rates. Dependence Modelling, 1, 65–93.
4. Bartlett, P. L., Bousquet, O., & Mendelson, S. (2005). Local Rademacher complexities. Annals of Statistics, 33(4), 1497–1537.
5. Barve, R. D., & Long, P. M. (1996). On the complexity of learning from drifting distributions. In Proceedings of the ninth annual conference on computational learning theory, COLT ’96.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献