Explaining neural networks without access to training data

Author:

Marton SaschaORCID,Lüdtke Stefan,Bartelt Christian,Tschalzev Andrej,Stuckenschmidt Heiner

Abstract

AbstractWe consider generating explanations for neural networks in cases where the network’s training data is not accessible, for instance due to privacy or safety issues. Recently, Interpretation Nets ($$\mathcal {I}$$ I -Nets) have been proposed as a sample-free approach to post-hoc, global model interpretability that does not require access to training data. They formulate interpretation as a machine learning task that maps network representations (parameters) to a representation of an interpretable function. In this paper, we extend the $$\mathcal {I}$$ I -Net framework to the cases of standard and soft decision trees as surrogate models. We propose a suitable decision tree representation and design of the corresponding $$\mathcal {I}$$ I -Net output layers. Furthermore, we make $$\mathcal {I}$$ I -Nets applicable to real-world tasks by considering more realistic distributions when generating the $$\mathcal {I}$$ I -Net’s training data. We empirically evaluate our approach against traditional global, post-hoc interpretability approaches and show that it achieves superior results when the training data is not accessible.

Funder

Universität Mannheim

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. Bhardwaj, K., Suda, N., & Marculescu, R. (2019). Dream distillation: A data-independent model compression framework. arXiv preprint arXiv:1905.07072

2. Boz, O., & Hillman, D. (2000). Converting a trained neural network to a decision tree dectext-decision tree extractor. Citeseer.

3. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC Press.

4. Buciluǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 535–541).

5. Craven, M., & Shavlik, J. (1995). Extracting tree-structured representations of trained networks. Advances in neural information processing systems8.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Sentiment Analysis: Techniques, Implementations and Challenges across Diverse Modalities;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3