Machine unlearning: linear filtration for logit-based classifiers

Author:

Baumhauer Thomas,Schöttle PascalORCID,Zeppelzauer Matthias

Abstract

AbstractRecently enacted legislation grants individuals certain rights to decide in what fashion their personal data may be used and in particular a “right to be forgotten”. This poses a challenge to machine learning: how to proceed when an individual retracts permission to use data which has been part of the training process of a model? From this question emerges the field of machine unlearning, which could be broadly described as the investigation of how to “delete training data from models”. Our work complements this direction of research for the specific setting of class-wide deletion requests for classification models (e.g. deep neural networks). As a first step, we propose linear filtration as an intuitive, computationally efficient sanitization method. Our experiments demonstrate benefits in an adversarial setting over naive deletion schemes.

Funder

Austrian Science Fund

Österreichische Forschungsförderungsgesellschaft

MCI Management Center Innsbruck – Internationale Hochschule GmbH

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference39 articles.

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep learning with differential privacy. In: 23rd ACM Conference on Computer and Communications Security (ACM CCS)

2. Achille, A., Paolini, G., & Soatto, S. (2019). Where is the information in a deep neural network? arXiv 190512213

3. AT&T Laboratories Cambridge (1994) The database of faces

4. Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition, 84, 317–331.

5. Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C., Jia, H., Travers, A., Zhang, B., Lie, D., & Papernot, N .(2019). Machine unlearning. arXiv preprint arXiv:1912.03817

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing unreliable local models in federated learning through unlearning;Neural Networks;2024-12

2. An overview of machine unlearning;High-Confidence Computing;2024-07

3. Goldfish: An Efficient Federated Unlearning Framework;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

4. Reconfigurable IoT Solution for Train Integrity and Monitoring;IEEE Internet of Things Journal;2024-06-15

5. Toward Efficient and Robust Federated Unlearning in IoT Networks;IEEE Internet of Things Journal;2024-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3