Funder
National Natural Science Foundation of China
Shanghai Youth Science and Technology Talents Sailing Program
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Akbik, A., Blythe, D., & Vollgraf, R. (2018). Contextual string embeddings for sequence labeling. In Proceedings of the 27th international conference on computational linguistics (pp. 1638–1649).
2. Arshad, O., Gallo, I., Nawaz, S., & Calefati, A. (2019). Aiding intra-text representations with visual context for multimodal named entity recognition. In 2019 International conference on document analysis and recognition (ICDAR) (pp. 337–342). IEEE.
3. Asgari-Chenaghlu, M., Feizi-Derakhshi, M. R., Farzinvash, L., Balafar, M., & Motamed, C. (2020). A multimodal deep learning approach for named entity recognition from social media. arXiv preprint arXiv:2001.06888
4. Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6154–6162).
5. Changpinyo, S., Sharma, P., Ding, N., & Soricut, R. (2021). Conceptual 12m: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3558–3568).