ProtoSimi: label correction for fine-grained visual categorization

Author:

Shen JialiangORCID,Yao Yu,Huang Shaoli,Wang Zhiyong,Zhang Jing,Wang Ruxing,Yu Jun,Liu Tongliang

Abstract

AbstractDeep models trained by using clean data have achieved tremendous success in fine-grained image classification. Yet, they generally suffer from significant performance degradation when encountering noisy labels. Existing approaches to handle label noise, though proved to be effective for generic object recognition, usually fail on fine-grained data. The reason is that, on fine-grained data, the category difference is subtle and the training sample size is small. Then deep models could easily overfit the noisy labels. To improve the robustness of deep models on noisy data for fine-grained visual categorization, in this paper, we propose a novel learning framework named ProtoSimi. Our method employs an adaptive label correction strategy, ensuring effective learning on limited data. Specifically, our approach considers the criteria of exploring the effectiveness of both global class-prototype and part class-prototype similarities in identifying and correcting labels of samples. We evaluate our method on three standard benchmarks of fine-grained recognition. Experimental results show that our method outperforms the existing label noisy methods by a large margin. In ablation studies, we also verify that our method is non-sensitive to hyper-parameters selection and can be integrated with other FGVC methods to increase the generalization performance.

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference43 articles.

1. Arpit, D., Jastrzebski, S. L., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S. et al. (2017). A closer look at memorization in deep networks. In ICML (pp. 233–242).

2. Bai, Y., Yang, E., Han, B., Yang, Y., Li, J., Mao, Y., Niu, G., & Liu, T. (2021). Understanding and improving early stopping for learning with noisy labels. Advances in Neural Information Processing Systems, 34, 24392–24403.

3. Chen, Y., Bai, Y., Zhang, W., & Mei, T. (2019). Destruction and construction learning for fine-grained image recognition. In CVPR (pp. 5157–5166).

4. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In CVPR (pp. 248–255).

5. Foret, P., Kleiner, A., Mobahi, H., & Neyshabur, B. (2020). Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3