1. Abadi, M.,, Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz R, Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S, Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. http://tensorflow.org/, software available from tensorflow.org
2. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019) Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD international conference on knowledge discovery and data mining.
3. Alayed, H., Frangoudes, F., & Neuman, C. (2013). Behavioral-based cheating detection in online first person shooters using machine learning techniques. In 2013 IEEE conference on computational inteligence in games (CIG) (pp. 1–8). https://doi.org/10.1109/CIG.2013.6633617
4. Alkhalifa, S. (2016). Machine learning and anti-cheating in fps games. Ph.D. thesis, University College London. https://doi.org/10.13140/RG.2.2.21957.86242
5. Borovykh, A., Bohte, S., & Oosterlee, C. W. (2018) Conditional time series forecasting with convolutional neural networks. arXiv:1703.04691