1. Adebayo, J., Gilmer, J., Muelly, M. Goodfellow, I., Hardt, M., & Kim, B. (2018). Sanity checks for saliency maps. In Advances in neural information processing systems (NeurIPS) (pp. 9505–9515).
2. Afrabandpey, H., Peltola, T., Piironen, J., Vehtari, A., & Kaski, S. (2020). A decision-theoretic approach for model interpretability in bayesian framework. Machine Learning, 109, 1855–1876.
3. Agarwal, S., Nguyen, T. T., Nguyen, T. L., & Ifrim, G. (2021). Ranking by aggregating referees: Evaluating the informativeness of explanation methods for time series classification. In International workshop on advanced analytics and learning on temporal data (pp. 3–20). Springer
4. Ahern, I., Noack, A., Guzman-Nateras, L., Dou, D., Li, B., & Huan, J. (2019). Normlime: A new feature importance metric for explaining deep neural networks. arXiv:1909.04200
5. Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. (2018). Towards better understanding of gradient-based attribution methods for deep neural networks. In International conference on learning representations (ICLR).