1. Agarwal, C., Queen, O., Lakkaraju, H., et al. (2022a). An explainable AI library for benchmarking graph explainers. In Workshop on graph learning benchmarks (GLB).
2. Agarwal, C., Zitnik, M., & Lakkaraju, H. (2022b). Probing GNN explainers: A rigorous theoretical and empirical analysis of GNN explanation methods. In International conference on artificial intelligence and statistics (pp. 8969–8996).
3. Baldassarre, F., & Azizpour, H. (2019). Explainability techniques for graph convolutional networks. arXiv preprint arXiv:1905.13686
4. Borgwardt, K. M., Ong, C. S., Schönauer, S., et al. (2005). Protein function prediction via graph kernels. Bioinformatics,21(suppl_1), i47–i56.
5. Chen, J., Song, L., Wainwright, M., et al. (2018). Learning to explain: An information-theoretic perspective on model interpretation. In International conference on machine learning, PMLR (pp. 883–892).