L2XGNN: learning to explain graph neural networks

Author:

Serra Giuseppe,Niepert Mathias

Abstract

AbstractGraph Neural Networks (GNNs) are a popular class of machine learning models. Inspired by the learning to explain (L2X) paradigm, we propose L2xGnn, a framework for explainable GNNs which provides faithful explanations by design. L2xGnn learns a mechanism for selecting explanatory subgraphs (motifs) which are exclusively used in the GNNs message-passing operations. L2xGnn is able to select, for each input graph, a subgraph with specific properties such as being sparse and connected. Imposing such constraints on the motifs often leads to more interpretable and effective explanations. Experiments on several datasets suggest that L2xGnn achieves the same classification accuracy as baseline methods using the entire input graph while ensuring that only the provided explanations are used to make predictions. Moreover, we show that L2xGnn is able to identify motifs responsible for the graph’s properties it is intended to predict.

Funder

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Reference53 articles.

1. Agarwal, C., Queen, O., Lakkaraju, H., et al. (2022a). An explainable AI library for benchmarking graph explainers. In Workshop on graph learning benchmarks (GLB).

2. Agarwal, C., Zitnik, M., & Lakkaraju, H. (2022b). Probing GNN explainers: A rigorous theoretical and empirical analysis of GNN explanation methods. In International conference on artificial intelligence and statistics (pp. 8969–8996).

3. Baldassarre, F., & Azizpour, H. (2019). Explainability techniques for graph convolutional networks. arXiv preprint arXiv:1905.13686

4. Borgwardt, K. M., Ong, C. S., Schönauer, S., et al. (2005). Protein function prediction via graph kernels. Bioinformatics,21(suppl_1), i47–i56.

5. Chen, J., Song, L., Wainwright, M., et al. (2018). Learning to explain: An information-theoretic perspective on model interpretation. In International conference on machine learning, PMLR (pp. 883–892).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3