Classifier calibration: a survey on how to assess and improve predicted class probabilities

Author:

Silva Filho TelmoORCID,Song HaoORCID,Perello-Nieto MiquelORCID,Santos-Rodriguez RaulORCID,Kull MeelisORCID,Flach PeterORCID

Abstract

AbstractThis paper provides both an introduction to and a detailed overview of the principles and practice of classifier calibration. A well-calibrated classifier correctly quantifies the level of uncertainty or confidence associated with its instance-wise predictions. This is essential for critical applications, optimal decision making, cost-sensitive classification, and for some types of context change. Calibration research has a rich history which predates the birth of machine learning as an academic field by decades. However, a recent increase in the interest on calibration has led to new methods and the extension from binary to the multiclass setting. The space of options and issues to consider is large, and navigating it requires the right set of concepts and tools. We provide both introductory material and up-to-date technical details of the main concepts and methods, including proper scoring rules and other evaluation metrics, visualisation approaches, a comprehensive account of post-hoc calibration methods for binary and multiclass classification, and several advanced topics.

Funder

Engineering and Physical Sciences Research Council

Alan Turing Institute

Estonian Research Competency Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference88 articles.

1. Allikivi, M.-L., & Kull, M. (2019). Non-parametric bayesian isotonic calibration: Fighting over-confidence in binary classification. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD’19), (pp. 68–85).

2. Angelopoulos, A. N. & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprintarXiv:2107.07511.

3. Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., & Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. The Annals of Mathematical Statistics, 26, 641–647.

4. Barlow, R. E., & Brunk, H. D. (1972). The isotonic regression problem and its dual. Journal of the American Statistical Association, 67(337), 140–147.

5. Bengs, V., Hüllermeier, E., & Waegeman, W. (2022). Pitfalls of epistemic uncertainty quantification through loss minimisation. In A. H. Oh, A. Agarwal, D. Belgrave, & K. Cho (eds.), Advances in Neural Information Processing Systems.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3