Fair tree classifier using strong demographic parity

Author:

Pereira Barata António,Takes Frank W.,van den Herik H. Jaap,Veenman Cor J.

Abstract

AbstractWhen dealing with sensitive data in automated data-driven decision-making, an important concern is to learn predictors with high performance towards a class label, whilst minimising for the discrimination towards any sensitive attribute, like gender or race, induced from biased data. Hybrid tree optimisation criteria have been proposed which combine classification performance and fairness. Although the threshold-free ROC-AUC is the standard for measuring classification model performance, current fair tree classification methods mainly optimise for a fixed threshold on the fairness metric. In this paper, we propose SCAFF—splitting criterion AUC for Fairness—a compound decision tree splitting criterion which combines the threshold-free strong demographic parity with ROC-AUC termed, easily applicable as an ensemble. Our method simultaneously leverages multiple sensitive attributes of which the values may be multicategorical, and is tunable with respect to the unavoidable performance-fairness trade-off. In our experiments, we demonstrate how SCAFF generates effective models with competitive performance and fairness with respect to binary, multicategorical, and multiple sensitive attributes.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3