Learning hierarchical probabilistic logic programs

Author:

Nguembang Fadja ArnaudORCID,Riguzzi FabrizioORCID,Lamma EvelinaORCID

Abstract

AbstractProbabilistic logic programming (PLP) combines logic programs and probabilities. Due to its expressiveness and simplicity, it has been considered as a powerful tool for learning and reasoning in relational domains characterized by uncertainty. Still, learning the parameter and the structure of general PLP is computationally expensive due to the inference cost. We have recently proposed a restriction of the general PLP language called hierarchical PLP (HPLP) in which clauses and predicates are hierarchically organized. HPLPs can be converted into arithmetic circuits or deep neural networks and inference is much cheaper than for general PLP. In this paper we present algorithms for learning both the parameters and the structure of HPLPs from data. We first present an algorithm, called parameter learning for hierarchical probabilistic logic programs (PHIL) which performs parameter estimation of HPLPs using gradient descent and expectation maximization. We also propose structure learning of hierarchical probabilistic logic programming (SLEAHP), that learns both the structure and the parameters of HPLPs from data. Experiments were performed comparing PHIL and SLEAHP with PLP and Markov Logic Networks state-of-the art systems for parameter and structure learning respectively. PHIL was compared with EMBLEM, ProbLog2 and Tuffy and SLEAHP with SLIPCOVER, PROBFOIL+, MLB-BC, MLN-BT and RDN-B. The experiments on five well known datasets show that our algorithms achieve similar and often better accuracies but in a shorter time.

Funder

Università degli Studi di Ferrara

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3