Dynamic attention-integrated neural network for session-based news recommendation

Author:

Zhang LemeiORCID,Liu Peng,Gulla Jon Atle

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference67 articles.

1. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge & Data Engineering, 17(6), 734–749.

2. Agarwal, D., & Chen, B.-C. (2009). Regression-based latent factor models. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 19–28). ACM.

3. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. ArXiv preprint arXiv:1409.0473 .

4. Bamshad, M., Dai, H., Tao, L., & Nakagawa, M. (2002). Using sequential and non-sequential patterns in predictive web usage mining tasks. In Proceedings of the IEEE international conference on data mining (ICDM ’02). IEEE Computer Society, Washington, DC, USA (pp. 669–672).

5. Baur, D., Buttgen, J., & Butz, A. (2012). Listening factors: A large-scale principal components analysis of long-term music listening histories. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1273–1276). ACM.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling User Viewing Flow using Large Language Models for Article Recommendation;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

2. Research on Automatic Detection and Summarization Algorithm of Microblog News Communication Events Based on Heterogeneous Network;2023 International Conference on Applied Physics and Computing (ICAPC);2023-12-27

3. Hybrid/Advanced Session-Based Recommender Systems;Session-Based Recommender Systems Using Deep Learning;2023-12-21

4. Deep learning in news recommender systems: A comprehensive survey, challenges and future trends;Neurocomputing;2023-12

5. Personalized News Recommendation: Methods and Challenges;ACM Transactions on Information Systems;2023-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3