Recursive tree grammar autoencoders

Author:

Paaßen BenjaminORCID,Koprinska Irena,Yacef Kalina

Abstract

AbstractMachine learning on trees has been mostly focused on trees as input. Much less research has investigated trees as output, which has many applications, such as molecule optimization for drug discovery, or hint generation for intelligent tutoring systems. In this work, we propose a novel autoencoder approach, called recursive tree grammar autoencoder (RTG-AE), which encodes trees via a bottom-up parser and decodes trees via a tree grammar, both learned via recursive neural networks that minimize the variational autoencoder loss. The resulting encoder and decoder can then be utilized in subsequent tasks, such as optimization and time series prediction. RTG-AEs are the first model to combine three features: recursive processing, grammatical knowledge, and deep learning. Our key message is that this unique combination of all three features outperforms models which combine any two of the three. Experimentally, we show that RTG-AE improves the autoencoding error, training time, and optimization score on synthetic as well as real datasets compared to four baselines. We further prove that RTG-AEs parse and generate trees in linear time and are expressive enough to handle all regular tree grammars.

Funder

Deutsche Forschungsgemeinschaft

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference48 articles.

1. Aiolli, F., Da San, G. M., & Sperduti, A. (2015). An efficient topological distance-based tree kernel. IEEE Transactions on Neural Networks and Learning Systems, 26(5), 1115–1120. https://doi.org/10.1109/TNNLS.2014.2329331.

2. Allamanis, M., Chanthirasegaran, P., Kohli, P., & Sutton, C. (2017). Learning continuous semantic representations of symbolic expressions. In Proceedings of the ICML (pp. 80–88). http://proceedings.mlr.press/v70/allamanis17a.html.

3. Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). Code2vec: Learning distributed representations of code. In Proceedings of the ACM programming languages (Vol. 3). https://doi.org/10.1145/3290353.

4. Bacciu, D., Micheli, A., & Podda, M. (2019). Graph generation by sequential edge prediction. In M. Verleysen (Ed.), Proceedings of the ESANN (pp. 95–100). https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-107.pdf.

5. Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical Computer Science, 337(1), 217–239. https://doi.org/10.1016/j.tcs.2004.12.030.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The language of hyperelastic materials;Computer Methods in Applied Mechanics and Engineering;2024-08

2. Grammar-Based Generation of Strut-and-Tie Models for Designing Reinforced Concrete Structures;2024

3. An Approach to Representation Learning in Morphological Robot Evolution;2023 IEEE Symposium Series on Computational Intelligence (SSCI);2023-12-05

4. gym-saturation: Gymnasium Environments for Saturation Provers (System description);Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3