Refining neural network predictions using background knowledge

Author:

Daniele Alessandro,van Krieken EmileORCID,Serafini Luciano,van Harmelen Frank

Abstract

AbstractRecent work has shown learning systems can use logical background knowledge to compensate for a lack of labeled training data. Many methods work by creating a loss function that encodes this knowledge. However, often the logic is discarded after training, even if it is still helpful at test time. Instead, we ensure neural network predictions satisfy the knowledge by refining the predictions with an extra computation step. We introduce differentiable refinement functions that find a corrected prediction close to the original prediction. We study how to effectively and efficiently compute these refinement functions. Using a new algorithm called iterative local refinement (ILR), we combine refinement functions to find refined predictions for logical formulas of any complexity. ILR finds refinements on complex SAT formulas in significantly fewer iterations and frequently finds solutions where gradient descent can not. Finally, ILR produces competitive results in the MNIST addition task.

Funder

HORIZON EUROPE European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference35 articles.

1. Ahmed, K., Teso, S., Chang, K.-W., den Broeck, G. V., & Vergari, A. (2022) Semantic probabilistic layers for neuro-symbolic learning. CoRR, arXiv:2206.00426.

2. Alsina, C. (1984) On Schur-Concave t-norms and triangle functions. In: W. Walter, editor, General Inequalities 4: In Memoriam Edwin F. Beckenbach 4th International Conference on General Inequalities, Oberwolfach, May 8–14, 1983, pages 241–248. Birkhäuser, Basel, ISBN 978-3-0348-6259-2. https://doi.org/10.1007/978-3-0348-6259-2_22.

3. Badreddine, S., d’Avila Garcez, A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artificial Intelligence, 303, 103649.

4. Calvo, T., Kolesárová, A., Komorníková, M., & Mesiar, R. (2002) Aggregation operators: Properties, classes and construction methods. In T. Calvo, G. Mayor, and R. Mesiar, editors, Aggregation Operators: New Trends and Applications, pages 3–104. Physica-Verlag HD, Heidelberg, ISBN 978-3-7908-1787-4.

5. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., & Fiedel, N. (2022) PaLM: Scaling Language modeling with pathways. arXiv:2204.02311.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3