Refining neural network predictions using background knowledge
-
Published:2023-03-14
Issue:9
Volume:112
Page:3293-3331
-
ISSN:0885-6125
-
Container-title:Machine Learning
-
language:en
-
Short-container-title:Mach Learn
Author:
Daniele Alessandro, van Krieken EmileORCID, Serafini Luciano, van Harmelen Frank
Abstract
AbstractRecent work has shown learning systems can use logical background knowledge to compensate for a lack of labeled training data. Many methods work by creating a loss function that encodes this knowledge. However, often the logic is discarded after training, even if it is still helpful at test time. Instead, we ensure neural network predictions satisfy the knowledge by refining the predictions with an extra computation step. We introduce differentiable refinement functions that find a corrected prediction close to the original prediction. We study how to effectively and efficiently compute these refinement functions. Using a new algorithm called iterative local refinement (ILR), we combine refinement functions to find refined predictions for logical formulas of any complexity. ILR finds refinements on complex SAT formulas in significantly fewer iterations and frequently finds solutions where gradient descent can not. Finally, ILR produces competitive results in the MNIST addition task.
Funder
HORIZON EUROPE European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Reference35 articles.
1. Ahmed, K., Teso, S., Chang, K.-W., den Broeck, G. V., & Vergari, A. (2022) Semantic probabilistic layers for neuro-symbolic learning. CoRR, arXiv:2206.00426. 2. Alsina, C. (1984) On Schur-Concave t-norms and triangle functions. In: W. Walter, editor, General Inequalities 4: In Memoriam Edwin F. Beckenbach 4th International Conference on General Inequalities, Oberwolfach, May 8–14, 1983, pages 241–248. Birkhäuser, Basel, ISBN 978-3-0348-6259-2. https://doi.org/10.1007/978-3-0348-6259-2_22. 3. Badreddine, S., d’Avila Garcez, A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artificial Intelligence, 303, 103649. 4. Calvo, T., Kolesárová, A., Komorníková, M., & Mesiar, R. (2002) Aggregation operators: Properties, classes and construction methods. In T. Calvo, G. Mayor, and R. Mesiar, editors, Aggregation Operators: New Trends and Applications, pages 3–104. Physica-Verlag HD, Heidelberg, ISBN 978-3-7908-1787-4. 5. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., & Fiedel, N. (2022) PaLM: Scaling Language modeling with pathways. arXiv:2204.02311.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|