Scale-preserving automatic concept extraction (SPACE)

Author:

Posada-Moreno Andrés FelipeORCID,Kreisköther Lukas,Glander Tassilo,Trimpe Sebastian

Abstract

AbstractConvolutional Neural Networks (CNN) have become a common choice for industrial quality control, as well as other critical applications in the Industry 4.0. When these CNNs behave in ways unexpected to human users or developers, severe consequences can arise, such as economic losses or an increased risk to human life. Concept extraction techniques can be applied to increase the reliability and transparency of CNNs through generating global explanations for trained neural network models. The decisive features of image datasets in quality control often depend on the feature’s scale; for example, the size of a hole or an edge. However, existing concept extraction methods do not correctly represent scale, which leads to problems interpreting these models as we show herein. To address this issue, we introduce the Scale-Preserving Automatic Concept Extraction (SPACE) algorithm, as a state-of-the-art alternative concept extraction technique for CNNs, focused on industrial applications. SPACE is specifically designed to overcome the aforementioned problems by avoiding scale changes throughout the concept extraction process. SPACE proposes an approach based on square slices of input images, which are selected and then tiled before being clustered into concepts. Our method provides explanations of the models’ decision-making process in the form of human-understandable concepts. We evaluate SPACE on three image classification datasets in the context of industrial quality control. Through experimental results, we illustrate how SPACE outperforms other methods and provides actionable insights on the decision mechanisms of CNNs. Finally, code for the implementation of SPACE is provided.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3