HIVE-COTE 2.0: a new meta ensemble for time series classification

Author:

Middlehurst MatthewORCID,Large JamesORCID,Flynn MichaelORCID,Lines JasonORCID,Bostrom AaronORCID,Bagnall AnthonyORCID

Abstract

AbstractThe Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) is a heterogeneous meta ensemble for time series classification. HIVE-COTE forms its ensemble from classifiers of multiple domains, including phase-independent shapelets, bag-of-words based dictionaries and phase-dependent intervals. Since it was first proposed in 2016, the algorithm has remained state of the art for accuracy on the UCR time series classification archive. Over time it has been incrementally updated, culminating in its current state, HIVE-COTE 1.0. During this time a number of algorithms have been proposed which match the accuracy of HIVE-COTE. We propose comprehensive changes to the HIVE-COTE algorithm which significantly improve its accuracy and usability, presenting this upgrade as HIVE-COTE 2.0. We introduce two novel classifiers, the Temporal Dictionary Ensemble and Diverse Representation Canonical Interval Forest, which replace existing ensemble members. Additionally, we introduce the Arsenal, an ensemble of ROCKET classifiers as a new HIVE-COTE 2.0 constituent. We demonstrate that HIVE-COTE 2.0 is significantly more accurate on average than the current state of the art on 112 univariate UCR archive datasets and 26 multivariate UEA archive datasets.

Funder

engineering and physical sciences research council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference42 articles.

1. Arul, M., & Kareem, A. (2021). Applications of shapelet transform to time series classification of earthquake, wind and wave data. Engineering Structures, 228, 111564.

2. Bagnall, A., Dau, H., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., & Keogh, E. (2018). The UEA multivariate time series classification archive, 2018. ArXiv e-prints arXiv:1811.00075.

3. Bagnall, A., Flynn, M., Large, J., Lines, J., & Middlehurst, M. (2020). On the usage and performance of HIVE-COTE v1.0. In Proceedings of the 5th workshop on advances analytics and learning on temporal data, lecture notes in artificial intelligence (Vol. 12588).

4. Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3), 606–660.

5. Batista, G., Keogh, E., Tataw, O., & deSouza, V. (2014). CID: An efficient complexity-invariant distance measure for time series. Data Mining and Knowledge Discovery, 28(3), 634–669.

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3