Responsible model deployment via model-agnostic uncertainty learning

Author:

Lahoti PreethiORCID,Gummadi Krishna,Weikum Gerhard

Abstract

AbstractReliably predicting potential failure risks of machine learning (ML) systems when deployed with production data is a crucial aspect of trustworthy AI. This paper introduces the Risk Advisor, a novel post-hoc meta-learner for estimating failure risks and predictive uncertainties of any already-trained black-box classification model. In addition to providing a risk score, the Risk Advisor decomposes the uncertainty estimates into aleatoric and epistemic uncertainty components, thus giving informative insights into the sources of uncertainty inducing the failures. Consequently, Risk Advisor can distinguish between failures caused by data variability, data shifts and model limitations and provide useful guidance on appropriate risk mitigation actions (e.g., collecting more data to counter data shift). Extensive experiments on various families of black-box classification models and on real-world and synthetic datasets covering common ML failure scenarios show that the Risk Advisor reliably predicts deployment-time failure risks in all the scenarios, and outperforms strong baselines.

Funder

European Research Council

Max Planck Institute for Informatics

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference43 articles.

1. Barber, D., & Bishop, C. M. (1998). Ensemble learning in Bayesian neural networks. Nato ASI Series F Computer and Systems Sciences, 168, 215–238.

2. Bartlett, P. L., & Wegkamp, M. H. (2008). Classification with a reject option using a hinge loss. Journal of Machine Learning Research, 9, 1823–1840.

3. Ben-Gal, I. (2010). Outlier detection. In O. Maimon & L. Rokach (Eds.), Data mining and knowledge discovery handbook (2nd ed., pp. 117–130). Springer.

4. Bhatt, U., Antorán, J., & Zhang, Y. et al. (2021). Uncertainty as a form of transparency: Measuring, communicating, and using uncertainty. In Proceedings of the 2021 AAAI/ACM conference on AI, ethics, and society (pp. 401–413).

5. Cover, T. M. (1999). Elements of information theory. Springer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3